Нейропротез вернул парализованным макакам-резусам способность ходить
Международной команде ученых удалось создать нейропротез для восстановления функции парализованных конечностей макак-резусов, которые отнялись после повреждения спинного мозга. Ученые воплотили в жизнь идею о передаче нервных импульсов, идущих от моторной области коры, к части спинного мозга, лежащей ниже повреждения. Для этого потребовалось разработать целый комплекс технологических приемов и устройств, не говоря уже о расшифровке картины нервных возбуждений, лежащих в основе ходьбы. Но в результате обезьяны с поврежденным спинным мозгом самостоятельно передвигаются!
Когда ученые делают работу, например, по расшифровке сигналов нейронов той или иной части нервной системы, или изучают различия возбуждений нейронов в небольшой области мозга, или, к примеру, с помощью мутантных линий учатся прослеживать путь отдельных нейронов, или пишут программы для вычленения специфического нейронного ответа из миллионов одновременных сигналов, то обычно говорят, что в конечном итоге «это исследование поможет лечить то или иное нейродегенеративное заболевание».
Кажется, эта фраза вставляется для проформы, чтобы как-то оправдать чаяния налогоплательщиков, вынужденных платить за отвлеченные упражнения ученых. Но вот вчера в журнале Nature опубликована работа, в которой показано, как долгий путь «отвлеченных упражнений» воплотился в реальный и перспективный лечебный результат: приматы (макаки-резусы) начали ходить после повреждения спинномозговых нервов и паралича задних конечностей.
Вот какой путь для этого пришлось пройти. Хорошо и печально известно, что при разрывах (разрезах) нейронов спинного мозга в грудном или поясничном отделе наступает паралич нижних конечностей, но при этом при частичном разрыве конечность может постепенно восстановить способность двигаться. Значит, нейроны ниже разрыва сохраняют жизнеспособность и функциональность. Действительно, эксперименты по стимуляции участков спинного мозга ниже места разрыва показали, что конечность может двигаться.
Это навело ученых на мысль, что, в принципе, можно реконструировать картину возбуждения в двигательных центрах, которая возникает при движении конечностей во время ходьбы, и затем послать эти импульсы в двигательные центры спинного мозга, из которых идут нейроны к мышцам сгибателям и разгибателям конечностей. Началась работа по воплощению этого фантастического плана в жизнь. Сначала были опыты с крысами. Они помогли понять, какие задействованы каскады обратных связей между моторными областями коры и движениями конечностей.
Ученые даже создали терапевтический тренажер, ускоряющий восстановление двигательной активности у крыс. Но крысы — это всё же не человек, у них и мозг, и движения устроены совсем иначе. Так что ученые решились начать работать с приматами, выбрав макак-резусов для своих исследований.
Они тщательно изучили динамику импульсов отдельных нейронов при движении конечностей и сняли временную развертку возбуждения нейронов в моторной коре у обезьян. Затем из общей картины возбуждений вычленили те, которые связаны с двигательной активностью. Звучит просто, но технически это очень непростая задача — нужно из миллионов возбуждений выбрать те, которые синхронны с конкретными движениями конечности в каждый момент времени.
Так или иначе, был получен образ «команды сверху» с формированием двигательного импульса в коре — своего рода идея ходьбы, закодированная в нервных импульсах, «нейронное» намерение движения. Эта «команда сверху» должна быть воспринята «исполнительным комитетом» — нейронами спинного мозга, которые реализуют идею ходьбы в движение мышц. В результате нейробиологам удалось весьма точно очертить группы спинномозговых нервов, которые воспринимают конкретные импульсы из головного мозга и передают их мышцам (сгибателям и разгибателям).
Итак, места для передатчиков и приемников импульсов найдены, определены их функциональные соответствия. Теперь нужно было создать эти устройства — передатчик и приемник. Оба должны быть миниатюрны и не иметь никаких проводов. Также ко всему этому требовалось разработать алгоритм, который считанные с моторной области возбуждения сможет обработать и, выделив нужные импульсы, передать их на приемник.
Ясно, что скорость обработки имеет значение — между идеей и воплощением не может быть большой задержки, ведь скорость мысли весьма велика — около 30 м/сек. Следовательно, обработка информации тоже должна соответствовать этому скоростному масштабу, а это представляет еще одну серьезную техническую проблему. С ней разработчики тоже справились.
В результате ученые создали микрочип, считывающий картину возбуждения моторной коры, и транслятор, передающий эти данные на компьютер. Там эти данные обрабатываются и на выходе выдается импульс движения. Этот импульс отправляется на приемник с несколькими выходами, их число соответствует числу групп двигательных нейронов, передающих импульсы мышцам.
Затем за дело взялись хирурги. В мозг макакам, с частично перерезанным спинным мозгом и парализованной конечностью вживили микрочип, соединенный с транслятором. В поясничный отдел вживили приемник с 16 выходами.
И вот, когда закончился недельный период адаптации после операции, можно было посмотреть, как вся эта система работает. Передатчик и приемник выключены — лапа у макаки приволакивается, она явно парализована. Передатчик и приемник включены — лапа двигается, как ни в чем не бывало! Обезьяна идет на всех четырех лапах. У нее в голове возникает намерение произвести движение, это намерение — то есть нейронные возбуждения — немедленно передаются в нужное место спинного мозга, и движение производится.
Обезьяна начинает движение без всякой тренировки, спонтанно, движением управляет ее собственный мозг. Ученые выполнили свой фантастический замысел!
Фото с сайта newscientist: силиконовая модель мозга макаки резус с микрочипом, вживляемым в область моторной коры.
Источник: https://vk.cc/5Pj1eh
#primates #приматы